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ABSTRACT 

We show that  the minimal k such that  tt k E LI (SU(n) )  for all central, 

continuous measures tt on SU(n) is k = n. We do this by exhibiting an 

element g C SU(n) for which the (n - 1)-fold product  of its conjugacy 

class has zero Haar measure. This ensures that  if #g is the corresponding 

orbital measure supported on the conjugacy class, then # n - 1  is singular g 
to L 1. 

1. I n t r o d u c t i o n  

It  is well known that  there are many continuous, singular measures on the circle 

(or any compact abelian group) all of whose convolution powers remain singular 

to L 1. In contrast, Ragozin in [6] proved the striking fact that  if G is a compact,  

connected, simple Lie group and # is any central, continuous measure on G, then 
~t dimG E LI(G). 

Ragozin's result was first improved in [2] where it was shown that  if k > 

d i m G / 2  and # is any central, continuous measure, then #k C LI(G), and that  

#k E L 2 (G) for many continuous central measures. This result was subsequently 

improved for the classical Lie groups in [3] where estimates were made on the 
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size of characters (in terms of their degrees) which enabled one to determine the 

minimal k such that  #k 6 L2(G) for all continuous, orbital measures #. The 

precise choice of k depends upon the Lie group type, but is roughly the rank of 

G. 

In particular, this improvement implies that  when the group is SU(n), then 

#~ E L 1 for all central, continuous measures #. In [1] it had previously been 

conjectured that  #n-1 6 LI(SU(n)) .  Here we will exhibit a central, continuous 

measure such that  #n-1 is purely singular, thereby completing the proof that  

#k 6 L 1 for all central, continuous measures # on SU(n) if and only if k > n. 

Our example is an orbital measure. The orbital  measure,  #g, supported on 

the conjugacy class C(9) containing g, is defined by 

f a f d t t g = f a f ( t g t - 1 ) d m a ( t  ) for any continuous function f .  

Orbital measures are continuous if and only if g is not in the centre of the group, 

and are always singular to Haar measure being supported on a submanifold of 

lower dimension. Indeed, #gk is (trivially) singular provided k dim C(g) < dim G. 

In [3] it was shown that  #~ 6 L2(SU(n)) for all g not in the centre of SU(n). 

Since #~ is supported on C(9) n, it follows that  the Haar measure of C(g) n is 

positive for all such 9. In this paper  we will prove that  the measure of C(g) n-1 
is zero when g is the diagonal matrix ( e i , . . . ,  e i, e -(n-1)i) in SU(n). Because 

#~-z  is supported on C(g) ~-1 this demonstrates that  #g is a central, continuous 

measure whose (n - 1)-st convolution power is singular. 

2. Basic properties  of  tangent  spaces 

2.1. OUTLINE OF THE PROOF. We begin by introducing notation and giving 

an outline of the strategy of the proof. 

Let G = SU(n), n > 2, and let g_ denote its Lie algebra, 

g-= {n • n matrices z :  z = - z * ,  t r z  = 0}. 

We view g as a real algebra of dimension n 2 - 1. For z = (zjk) Eg_ we write 

zjk -= Xjk + iyjk with xjk, Yjk real. Note that  xj j  = 0 and zkj = --xjk + iyjk. 
Initially we focus on the diagonal matr ix  H = ( i , . . . ,  i , - ( n  - 1)i) in g and the 

adjoint orbit of H in g, 

0 = {Ad(g)H : g 6 G} = {9H9-1:9 G G}. 
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The  ma t r ix  H is relevant because its exponent ia l  is the ma t r ix  in SU(n) 

ment ioned in the introduct ion.  

Our  approach is geometric,  and involves a s tudy  of the tangent  spaces to the 

adjoint  orbit.  First ,  proper t ies  of the orbit  O are used to find small  spanning 

sets for the tangent  spaces to O at  typical  points  of O. Next,  the spanning sets 

are used to prove tha t  the dimension of the sum of any n - 1 of these ' typical '  

t angent  spaces is less than  the dimension of g. This  is basically done by finding 

sufficiently m a n y  linearly independent  vectors in the kernel of a suitable matr ix .  

A denseness and continuity a rgument  allows us to extend this result  to the sum 

of any n - 1 tangent  spaces to the orbit.  Because these sums of tangent  spaces 

are the images of the differential of the addi t ion m a p  from 0 n-1 to the (n - 1)- 

fold sum of O, Sard 's  theorem can be invoked to argue tha t  the Haar  measure  

of (n - 1)O, and hence exp( (n  - 1)O), is zero. Finally, we consider g _-- e x p H  in 

SU(n),  and its conjugacy class C. Since it is known tha t  C n-1 c_ exp(n  - 1)O, 

this set must  also have Haar  measure  zero, complet ing the proof  of our key result. 

2.2. PROPERTIES OF THE ADJOINT ORBIT. 

PROPOSITION 2.1: The dimension of  the orbit 0 is 2(n - 1). 

P r o o f  A general fact abou t  Lie algebras is tha t  if ~ +  is the set of posit ive roots  

of g and ff)+(H) is the set of posit ive roots  annihi lat ing H ,  then  the dimension 

of the adjoint  orbit  of H is 2([ff)+l - Iff)+(U)l) ([5], ch. 6: 4.8). In our case we 

may  take 

(I) + = { e , - e J  : l _ < i < j < _ n }  

where {ez},~l denotes the s tandard  basis vectors  in JR'*. Then  

(I)+(H) = {e, - ej : 1 <_ i < j < n -  1} 

which has cardinal i ty  (n21). | 

Next,  we list some e lementary  proper t ies  of elements of the orbit.  

PROPOSITION 2.2: Suppose z C O. Then 

(i) Xkn2 +ykn2 = ( l _ y k k ) ( l _ y , , ~ )  f o r l < k < n - 1 ,  

(ii) (1 - ynn)x jk  = - x j n y k n  + YjnXkn for 1 <_ j < k < n - 1, 

(iii) - ( 1  - Ynn)Yjk = X~nXk,~ + YjnYk,* for 1 < j < k _< n - 1. 

Proof'. Let z = (z3k) = g H g  -1 for g C SU(n) and assume g = (gjk) with 

gjk = a jk  + i/~jk, ask,  fljk real. One can easily calculate tha t  

"a--1 

Zjk = i E gjlg-~ - (n - 1)igjngk,~. 
1=1 
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Using the properties ~-~=1 Igkll 2 = 1 and ~-~-~=1 gkt-~l = 0 i f j  # k one can verify 

that  the diagonal entries of z satisfy Ykk = 1 - -n  Igknl 2, and the non-diagonal 

entries are given by 

X3k = n(ak.~jn -- aj,~flk.) and Yjk = --n(aknajn + ~3n~k.) 

for j ~ k. It  is a straightforward exercise to see that  the claims follow easily from 

these facts. | 

We identify z E_g as the row vector (also denoted z) in R n~-I  with the identi- 

fication 

(2.1) Z ~ [Y11, �9 �9 �9 ~ Y n - l , n - 1 ,  X12 ,  Y12, �9 �9 �9  X l , n - 1 ,  Y l , n - 1 ,  X23 ,  

�9 �9 � 9  Y 2 , n - 1 ,  �9 �9 �9  X l , n ,  �9 �9 � 9  Y n - l , n ] .  

If  Ynn r 1 we call z gener ic .  

2 . 3 � 9  T A N G E N T  SPACES OF THE ORBIT. A s  mentioned earlier, our approach to 

the problem involves a study of tangent spaces: For z E O, the tangent space to 

O at z will be denoted Tz. This is known ([5], ch. 6: 4; see also [9], 2.9) to equal 

Tz = {[X,z] : X C g } .  

Let ejk denote the n • n matrix with 1 in entry j, k and 0 else. For 1 < j < n -  1, 

define X/  and Yj Eg_ by Xj  = e j ,  - e,~j and Y3 = i(ejn + e,~j). We will think of 

IX3, z] and [Y~, z] as row vectors in ]I~ n2-1 with the ordering outlined above, and 

construct a 2(n - 1) x (n 2 - 1) matr ix  Az whose rows in order are 

[Y1, z], [xl, z ] , . . ,  [y._l, z], [x._ 1, z]  

A good understanding of Az is the key to all of our results�9 We will label 

the columns of Az by the identification of z as a row vector in R n2-1. For 

1 _< j,  k < n - 1, [Xj, Z]k k = 2iyjn~3k and [Yj, Z]k k = --2iXjnb~k�9 We label the 

rows [Xj, z] and [Yj, z] by Yjn and xjn, respectively. For a = xjn or Yjn and 

b = yjj, Xjk or Yjk we denote by (a, b) the entry of Az along row a and column b. 

The row and column vectors will be denoted Ra and Cb. We refer to the variables 

in the set 

{y,~,xjk, yj~ : l <_ i , j , k  < n - 1 ,  j < k} 

as the nontangent variables, and 

{x j , , y jn  :1 ~ j < n -  1} 
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as the tangent  variables. The submatr ix  of Az consisting of the nontangent  

variable columns will be denoted C~. 

The following lemma describes the elements of A~ in terms of (a, b), along 

columns given by nontangent  variables. The entries in the tangent  variable 

columns could be described as well, but  this is not  necessary for our main result. 

LEMMA 2.3: Let z 6 R n2-1. For 1 < j < n - 1 and 1 <_ i < k <_ n - 1, we have: 

(i) (x3,~,xik) =- (yjn,  Xik) = (X3n,Yik) = (Y3n, Yik) = 0 i f i ,  k # j; 

(ii) (x3,~, Ykk) = --2X3n~jk, (Yj, ,  Ykk) = 2Yj,63k; 

(iii) ( x j , ,  x jk)  = - Y k , ,  (x3,,  Yjk) = --Xk,~, (y j , ,  Xjk) = - -xk , ,  (y j , ,  Yjk) = Ykn, 
for j < k; 

(iv) ( x j , , x i3 )  = Yi,,  (x3, ,Y , j )  = - x i n ,  (y jn ,x , j )  = z,~, (Y~n,Yij) = Y,n, 
for i  < j .  

Proofi These results are due to the following calculations: 

0 i f m # j  
(ejnz)mk = --Xkn + iykn i f m = j , k ~ t n  ; 

iyn,~ if m = j ,  k = n 
0 i f m # n  

(e~3z)~k = --xjk + iyjk i f r n = n , k < j  . 
i y ~ 3  i f m = n , k = j  ' 
xjk + iyjk if m = n, k > j 

0 i f k C n  

(zejn)mk = Xmj + iymj if k = n, m < j . 
iyj3 i f k = n , m = j  ' 
-X3m + iy3m i f k = n , m > j  

0 i f k C j  
(Zenj )mk = Xmn + iymn if k = j ,  m • n . 

iynn if k -- j ,  m = n 

We also extend the definition of Cz to  any z 6 II  n2-1 (where the components  

of z are as labelled in (2.1)) in the natural  way. The matr ix  Cz for SU(5) is listed 

in the appendix for the reader 's  convenience. 

LEMMA 2.4: For any z 6 R n2-1, (Y l~ ,X ln , . . .  , x~- l ,~ )Cz  = O. 

Proof  This is equivalent to checking tha t  if R~ denotes row a of Cz, then 

n- - I  n - - i  
R t i (2.2> Z + Z = o. 

j----1 j----1 
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Expanding  the left side of equat ion (2.2) along the columns labelled by Ykk, 

k---- 1 , . . . , n -  1, we obta in  

n - 1  n - 1  

y~ . ( -2x j . )~k  + ~ x~.(2y~)~jk = 0 
j= l  j= l  

Expand ing  along the columns Xik, for 1 < i < k _< n - 1, we have 

n--1 n--1 

j= l  j= l  

=yin(x~., x~k) + yk.(xk., x~k) + xi~(Yi., x,k) + Xk.(yk., Xik) 
=y~.(-yk.) + yk.(y,.) + x,.(-xk.) + ~k.(x,.) = o. 

A similar calculat ion shows tha t  the expansion along columns Y,k is also zero, 

establishing (2.2). | 

PROPOSITION 2.5: L e t  z C 0 be generic.  

(i) I f z  = H ,  then  TH = s p a n { e j n - - e n j ,  i ( e j n + e , q )  : j <_ n - - l }  and rank(Az)  = 

2(n - 1). 

(ii) I f z  ~ H ,  then  rank(Cz)  = 2n - 3. 

Proof" (i) I t  is easily seen tha t  for 1 <_ j <_ n - 1, [X j ,  HI  = - n i ( e j n  + e,~j) and 

[Y3, HI  = n ( e j ~ - e n j ) .  These are linearly independent ,  hence rank(AH)  -- 2 ( n - 1 )  

and 

span{[Xj ,  HI ,  [Yj, H ] :  j < n - 1} = TH. 

(ii) Suppose tha t  for all 1 < i < n - 1, Yii -- 1. Proposi t ion 2.2 shows tha t  in 

this case xkn  = Ykn -~ 0 for all k r n. But  then  x j k  = Yjk = 0 for all j r k. 

As Tr  z = 0, this implies z = H .  Thus for any generic z other  than  H we m a y  

assume tha t  for some i, 

~ = ( 1  u~)(1 ~ . . ) # 0 ,  X i n  -'~ Y i n  - -  - -  

and hence at  least one of xin or Yi, r 0. I t  follows from the previous l emma  tha t  

the rows of Cz are linearly dependent ,  and hence rank(C~) < 2n - 3. 

Consider the following submat r ix  D z  of C~: 

D z  = [Cy,,, C~, , ,  Cu~,, . . . , C~,_,, ,  , Cy ,_ , , , ,  C~,,,+,, Cy,, ,+,,  . . . , C~ . . . .  1, Cy . . . .  1]. 

Note tha t  the number  of columns in D z  is 2n - 3. We will show tha t  they  are 

linearly independent .  So suppose tha t  

i--1 n--1 

(2.3) ~ (aS~,, + bS~,,) + ~ (~jC~,, + b~jC~,,) + b.C~,, = O. 
j--.=l j = z + l  
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Expanding (2.3) along rows labelled by xk~ for k 7s i we obtain 

E (aji(xkn, xj i)  + b3,(xkn, yj,)) 
3=1 

n--1  

j : z + l  

Take 1 _< k < i. Using Lemma 2.3, (2.4) simplifies to 

ak~(--Yin) + bk~(-x~n) = O. 

Expanding (2.3) along the row labelled by Ykn, k 7s i, we find that  

ak , ( - x ,~ )  + bk~(y,,~) = O. 

2 2 As Xzn + Ym Ys 0, we conclude that  ak~ = bki = O. 

A similar analysis shows that  aik = b~k = 0 for i < k <_ n - 1, hence (2.3) 

reduces to biiCy,, =- O. But Cy~ (xi~) = - 2 x i n  and Cy~, (y,~) = 2y~n. As at least 

one of xin or Yi,~ 7 s O, b~i = 0. Thus we also have rank(Cz) > 2n - 3. | 

Remark  2.1: Although it was not necessary for the proof of this proposition to 

use the fact that  (2.2) holds for all z E IR ~2 - 1  this will be convenient later in the 

paper. 

We can now find a (small) spanning set for the tangent spaces at generic points. 

For z E O, let zt = [-~, x ln ,  Yl ,~, . . . ,  Xn-l ,n ,  Yn-l,n] E R n~ -1.  

COROLLARY 2.6: Suppose z E 0 is generic. Then 

Tz -- span(Rx~,Ry~n,  zt : j = 1 , . . . , n -  1). 

Proo f  Note that  
1 

zt =- ---=[H, z], 
n z  

and thus belongs to Tz. As remarked above, if z -- H the vectors R x ~ ,  Ryes, 

j -- 1 , . . . ,  n - 1, already span Tz. 

Adjoin to A~ the row vector z~, and let D~ denote the matr ix  obtained from 

this enlarged matr ix  in the same manner as D~ was obtained from Az. We 

already know from the proof of the previous proposition that  the columns of D~ 

are linearly independent. If z 7s H, then (as also noted previously) for some i r n 

at least one of x/n or Yin 7 s O. Hence at least one of C~, n or Cy,~ is not in the 

span of the columns of D~z and therefore rank(A'z) _> 2(n - 1). | 
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3 .  S u m s  o f  t a n g e n t  s p a c e s  

3.1. KEY RESULTS�9 In this section we will prove tha t  the (n - 1)-fold sum of 

the orbit  has measure zero. We will continue to use the notat ion introduced in 

section 2. Our  main technical result is: 

THEOREM 3.1: If  Z(1),... ,Z  (n -2)  a r e  generic points belonging to the adjoint 

orbit 0 of H, then 

dim(T~(~) + . . .  + Tz(,,-2) + TH) <_ n 2 -- 2. 

Proo~ One can see from the proof  of Proposi t ion 2.5(i) tha t  AH -~ [01 DH], 

where DH :- (djk) is a 2(n -- 1) • 2(n -- 1) diagonal matr ix  with dj3 = - n i  for 

j odd and d3j = n for j even. It  follows from this observation and Corollary 

2.6 tha t  the theorem would be proved if we could show tha t  the rank of the 

2(n - 1)(n - 2) • (n - 1) 2 matr ix  

Cz(i) 
Cz(2) 

C(z) =- 

Cz(n-2) 

is at most  n ( n -  2) for all z = ( z ( D , . . . ,  z(n-2)),  z(J) generic points in O. This is 

what  we now proceed to show. 

For any z (j) 6 ]R n2-1, 1 < j < n - 2, and z = (z(1) , . . . ,  z ('~-2)) define 

aj ~ aJ z) 

) 

Yn-- l,n 
x 0 ) 

" n--l,n 

, bj = bJ ~) 

_(J) 
--:~In 

_5) 
-- ~6n_ l, n 

b(J) 
n--l,n 

Next, we define block vectors, with (n - 2) blocks. Each block vector will have 

either one or two non-zero blocks. We will denote by aj the block vector whose 

j - t h  block is aj. For 1 _ < i < j < n - 2, we set 

1 _ - (z) = B(z)  

[o'J [ : '  
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where aj (resp. b3) is in block i and ai ( -b i )  is in block j .  Let  

K(z )  = ~c~ (~) ,~(~) ~(~) ~ , ~ 3 k , ' j k  : l < i , j , k < n - 2 ,  j < k } ,  

and let Q(z) be the transpose of C(z).  

There are three main steps to the proof. First,  we will show tha t  K(z )  C_ 

ker(Q(z))  for all z. Then  we will prove tha t  for a dense set of vectors in 

R(n:-1)(~-2),  the set K(z )  is linearly independent.  Lastly, we use these facts 

to verify tha t  r ankC(z )  < n ( n -  2) for all z = ( z (1 ) , . . . , z (n -2 ) ) ,  z(J) generic 

points in O. 

STEP 1: g ( z )  C_ ker(Q(z)) :  By symmet ry  it is enough to show this for 

a l ,  c~12, fl12. Tha t  a l  E ker(Q(z))  follows from Lemma  2.4. 

To prove ~12,/~12 E ker(Q(z))  it is enough to show tha t  if 

[C~(~) ] 
C (2) = C(2)(z) = LC~(~) , 

Q(2) = transpose(C(2)) and 

O~12 ~ a l  , ~12 --  _ b  I , 

then a~2, ill2 �9 ker(Q(2)) �9 

We will check tha t  a~2 �9 ker(Q (2)) and leave the verification of ~ 2  to the 

reader. It  suffices to show tha t  ((~2) tr C (2) -- 0. For b = yjj ,  xjk, Yjk we will let 

C~ 2) denote the column of C (2) labelled by b. Since column vyr:(2)kk has non-zero en- 

tries only in positions ~(1) y O ) x ( ~  y(2) w i t h  values , (1) 2~ (1) ~ (2) , (2) ~kn ' kn ' kn --ZXkn ~ Ykn ~ --ZXkn , "~Ykn ' 
respectively, it is clear tha t  ((~2) r ,~yr~(2)k~ = 0. 

For l < i  < k < n - 1 ,  

(OLd2) tr C (2) 
X~k 

rt--1 
: E  [ (2), (1) (1)\ (2), (1) ~(1)~ (1)/ (2) (2)\ (1), (2) ( 2 ) )  

~Yjn (Xjn , Xik ) + Xjn (Yjn , ~ k  J "t- Yjn (Xjn , Xilr ) A- X3n (y3n , Xik ) 
j= l  

x - - ' .  q), (m) (m), ~(0(~(m) ~(m)~ q),  (m) ~(,~)~ (0 '  (m) _(-~)~ 
= ~ . ~  Ysn(Xzn 'Xzk )~ -Vknk~kn  '~ ik  ]"~Xin[Ysn '~zk ]~ -Xkn(Ykn  'Xik ) 

where ~ ,  denotes the sum over l = 1, m = 2 and l = 2, m = 1. Thus  

( , ~trr~(2 ) x---', (0,  (m), (0,  (m), _q) ,  (m), (0 ,  (m), 
~12J "-'z,k = ~ Yin (--Ykn ) -t- Ykn(Yin ) + ~in (--Xkn ) + Xkn(Xin ) = O. 

The  argument  tha t  (a~2) tr C(~2 = 0 is similar. 
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STEP 2: The  fact tha t  K(z )  is l inearly independent  for "most"  z is an immedia te  

consequence of the next  two lemmas.  

LEMMA 3.2: Assume that lair (z), ~ �9 �9 �9 b(~)n-3, a(Z_)2} is linearly independent. 
Then K ( z )  is linearly independent. 

Proo~ Assume 

n - - 2  

(3.1) E tiai + E t,ja~j + E sijflij = O. 
i = 1  1<_~<2~n-2 l < i < j < n - - 2  

By considering the last block one sees tha t  this equali ty implies 

n - - 3  

tn -2a , -2  + ~ (ti,,-2a~ - si,n-2bi) = O, 
i = 1  

and consequently tn-2 = t~,n-2 = si,n-2 = 0 for all i = 1 , . . . ,  n -  3. Subst i tu t ing  

this informat ion into (3.1) and examining the 2nd last block yields 

n - - 4  

+ ~ (to~-3a~ - s~,n-3bi) = O. tn-  3an--3 
i = 1  

Again we conclude tha t  tn -3  = ti,n-3 = si,n-3 = 0 for all i = 1 , . . . , n  - 4. 

Repeat ing,  it follows tha t  all coefficients ti, tij, sij = O. | 

LEMMA 3.3: There is a dense set of z = (z(1) , . . . , z (n-2)) ,  z (j) C R ~2-1 such 
that {a~ ~) b~ ~), "(~) (z) TM , . . . ,  On_3, an_21 is linearly independent. 

Proofi We will assume inductively tha t  for any x -- ( x (1 ) , . . . , x (n -2 ) ) ,  x 0) E 

Rn 2-1, and e > 0, there is some z E R (n2-1)(~-2) such tha t  [[z - x][ < e and the 

first 2j  - 1 rows of the ma t r ix  

[a~Z), _b~),  _(z)l . . . , u j  j 

are l inearly independent  for all j < k (k < n - 2). (Of course, then the 2j - 1 

column vectors are also linearly independent .)  

If  k = 1, this is easily seen to be t rue as we only need find z in an e- 

ne ighbourhood of x such tha t  y~)  # 0. Assuming the induction assumpt ion  

holds for k, we will show tha t  it holds for k + 1 (<  n - 2). 

Begin by choosing z in the e-neighbourhood o f x  which works for k and consider 

rows 1 , . . . , 2 k -  1 and row 2k + 1 of the ma t r ix  

.(z) _t,(z) _b(Z)l 
~ 1  , t ' l  ' ' ' ' '  k J" 



Vol. 130, 2002 SINGULARITY OF ORBITAL MEASURES IN SU(n) 103 

Notice that  the (2k + 1, 2k) entry of this matrix is ~(k) and this is formally "~kTl,n 
different from any other entry�9 By assumption, the upper (2k - 1) • (2k - 1) 

submatrix is invertible, hence there is only one choice for the (2k + 1, 2k) entry 

(with all other entries fixed) such that rows 1 , . . . ,  2k - 1, 2k § 1 are not linearly 

independent�9 If _(k) is equal to this one choice, we replace it by a suitable ;Zk+l,n 
real number such that the new (but still named) vector z continues to satisfy 

I Iz -x l l  < ~. As the entries of the upper ( 2 k -  1) • ( 2 k -  1) submatrix are 

unchanged after this replacement, the first 2 k -  1 rows of [al ~), - b ? ) , . . . , a ~  z)] 

remain linearly independent. 

Next, we carry out a similar argument with the first 2k + 1 rows of 

[a~Z),-b~ z), -b(k z), ,(z) l 
�9 " " ~ ~ k + 1 3 "  

(k+l) 
The (2k, 2k + 1) entry is xk, ~ and this is formally different from any other�9 The 

linear independence of rows 1, 2k 1, 2k + 1 of f (z) .(z) b (~)1 again 
�9 ' ' ~  - -  [ a l  , - - ~  , ' ' ' ,  k J 

ensures there is only one value for Xk, n~k+l such that the first 2k + 1 rows of 

[a~) ,_b~) ,  _b (z) ,(z) l 
�9 " " ' ' ~ k - ~ - l J  

are linearly dependent�9 Modify this component of z if necessary�9 Rows 1 , . . . ,  

2k - 1 of talr (z), - o  l"(z), .. ., a (~)] are unchanged with this new definition of z and 

thus remain linearly independent�9 This completes the induction step. | 

Completion of the Proof  of the Theorem. 

STEP 3: Bound for rank(C(z)): Steps I and 2 clearly imply that for a dense 

set of z �9 R (n2-1)(~-2), K ( z )  is a linearly independent set in kerQ(z).  Thus for 

a dense set of z, 

rank(C(z)) = rank(Q(z)) < 2(n - 1)(n - 2) - IK(z)l  = n (n  - 2). 

Suppose there was some vector x = (x(1) , . . . ,  x(n-2)), x(J) �9 R '~2-1 with rank(C x) 

> n(n  - 2). A continuity argument would imply that rank(C(z)) > n(n  - 2) for 

all z in a neighbourhood of x, and this is a contradiction. | 

In order to derive similar results for non-generic points, we need one additional 

result on the denseness of generic points�9 

LEMMA 3.4: The set 

{ (gHg- l ,gz% 1,�9 9 �9 su(n), z(,) �9 o gene ic , 
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is dense in the Cartesian product 0 '~- 1. 

Proof: Let x = ( 9Hg- l , gy (1 )g -1 , . . . , g y (n -2 )g  -1) �9 0 n-1 where 9 �9 SU(n), 

and assume y(J) = gsHg~ -1. Observe that y(S) is generic if and only if (g3)~n # 0 

(see the proof of Proposition 2.2). In the generic case set g~ -- gs and zO) = y(S). 

Otherwise, express gj as P s D j P f  1, where Dj �9 SU(n) is diagonal and Pj �9 

SU(n). Choose k - k( j )  such that (Ps)nk # 0 and take i -- i ( j )  # k( j ) .  Find a 

neighbourhood A s of 0 such that for all 

A � 9  ie : O � 9  0 # 0 } ~ U a - ,  

we have 

](PS),k] 2 (Dj)kkA + I(Ps),i] 2 (Ds),i~ # I(Ps),kl 2 (Ds)kk + I(Ps)nil 2 (Ds)ii. 

n - - 2  t Select A �9 ~ j = l  US" For g3 non-generic define a diagonal matrix D~ by 

(D3)kkA i f / = k ( j )  
(D~.)u = (Ds)~,X if l = i ( j )  

(Ds) u else 

and put g~ = PsD~P~ -1. Then 9~ �9 SV(n) and, as 

t p ,  2 t 
(gj ) . .  = I( 3)- f # (gs) . . ,  

k 

z(J) , .T ~-1 = 9)r19s is generic. 

By choosing A suitably close to 1 we can make 

(gHg -1, gz(1) g-1, . . . , gz(n-2) g-1 ) 

as close to x as necessary. | 

COROLLARY 3.5: For all z(1) , . . . ,  z (~-1) E O, 

dim(Tz(1) + . . - +  Tzr ) _< n 2 - 2  < dimg. 

Proof'. Since TAd(g)z = Ad(g)Tz, it follows that d i m ~ i  Tz,) = d i m ~ i  Tg-~zr 
�9 n - 1  n 2 z ( 1 )  for all 9 E G. Thus d l m ~ , = l  Tg-~z(,) 9 <_ - 2 whenever . . . ,  z (n-2) E O 

are generic and z (n-l) = H. 

Consider the addition map F from 0 n-1 to the (n - 1)-fold sum of O in g, 

F: O n-1 -+ ( n - 1 ) O  - O + . . .  + O C 9. 
Y 

n - - 1  
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The  differential o f F  at  x = ( x ( t ) , . . .  , x  (~-1)) e 0 " -1 ,  (dF)~,  maps  onto the sum 

of the tangent  spaces to O at  x (i), , - 1  Y~i=l T.,(,>. A continuity a rgument  shows tha t  

if the linear m a p  ( d F ) ,  had rank n 2 - -  1 at  some x, then  it would have rank  n 2 - -  1 

on a ne ighbourhood of x. This  contradicts  the fact tha t  d im ~ Tz(,) < n 2 - -  2 on 
a dense set ( z (1 ) , . . . ,  Z (n-l))  �9 0 n-1. 

COROLLARY 3.6: T h e  (n  - 1)-fold sum of  the orbit 0 has measure  zero in g_. 

Proof: Again consider the addi t ion m a p  F:  0 n-1 ~ ( n -  1)O C_ g. Since 

r a n k ( F )  < n 2 - 2  < dimg_ at  all points  of O n - l ,  Sard ' s  t heorem ([4]) implies tha t  

the measure  of the image of F is zero. But  the image of F is (n - 1)O. | 

3.2. TRANSFERRING THE RESULTS T O  S U ( n ) .  Finally, we consider the conju- 

gacy class in G containing exp (H) ,  C -~ C ( e x p H ) ,  and the orbi ta l  measure  #expH 

which it supports .  Since d i m C  -- 2 ( n -  1) (see [5], ch. 4 : 4 . 1 5  or [8], V I I I  7.4) 

we tr ivial ly know tha t  C k has measure  0 if 

k < d i m G / d i m C  = (n + 1)/2,  

and t ha t  for such k, ]AexpHk is singular to LI(G) .  In contrast ,  as was ment ioned 

in the introduct ion,  #e~pg E L 2 and hence belongs to L 1 ([3]). 

COROLLARY 3.7: (i) The H a a r  measure  of  the C k is zero i f  and only i l k  <_ n -  1. 
k (ii) The  measure #expH is singular to L 1 (G) i f  and only i f  k < n - 1. 

Proof." By [1], C '~-t  C_ exp ((n - 1)O). Since x --+ expx is a C 1 m a p  and the 

measure  of (n - 1)O is zero, it follows tha t  the Haar  measure  of exp ((n - 1)O) is 
rt--1 zero. The  measure /~expH is singular to L 1, being suppor ted  on a set of measure  

zero. 

The  measure  of C ~ is non-zero as C '~ suppor t s  the non-zero, absolutely con- 
n t inuous measure ~texpH. 

As it was a l ready known ([3]) t ha t  #n E L 1 for every central,  continuous 

measure  # on SU(n),  we have now proven the result  s ta ted  in the introduction:  

COROLLARY 3.8: When  G = SU(n) ,  #k E L I (G)  for every central, continuous 

measure # on G i f  and only i f  k > n. 

R e m a r k  3.1: Notice tha t  k L 1 L 2. ~expH E if and only if k /AexpH C I t  would be 

interesting to know if this is t rue  for all orbi ta l  measures  #g on SU(n).  I t  is 

known tha t  if v is any surface measure  suppor ted  on a submanifold  W such tha t  

W TM has interior, then  p m C L p for some p > 1 ([7]). 
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3.3. N-FOLD SUMS OF TANGENT SPACES. Since m ( C  n) > 0, it follows from 

Sard ' s  theorem tha t  

dim(Tz(,) + . . .  + Tz~,-l) + TH) = d i m g  

for some z ( 1 ) , . . . , z  (n- l )  ff O. In fact, we can display an explicit example  of 

points  z ( D , . . . ,  z (n -D for which this is true. 

Example  3.1:  Generic points  z (1) , . . . , z  (n-l) C O such that  Tz(,~ + . . .  + 

F i x a ,  b E  JR\{0} w i t h a  2 + b  2 = 1. For j = 1 , . . . , n - 1  let gj C SU(n) be 

defined by 

(a)JJ = - a ,  (gj)nn = a, ( a ) j n  = b, (gj)nj = b, (g3)kk = 1 

for k r j ,  n, and all other  entries of gj zero. Take 

we have 

z(~ ) = i  if k r j ,  n; 

z~J) ..(3) -abn i ;  

Certa inly  z (j) is generic. 

As in section 2 let 

z (j) = Ad(gj)H; 

z ( J ) = i ( 1 - n b 2 ) ;  z ( j ) = i ( 1 - n a 2 ) ;  j j  n n  

and z}~ ) = 0 else. 

X k = e k n - - e n k  and Y k = i ( e k n + e n k ) ,  

and recall t ha t  [Xk, z(J)], [Yk, z(J)] C Tz(~). From L e m m a  2.3 one can check tha t  

for k r j , n ,  

[Xk, z (j)] ----- -- iabn(ekj + ejk) + n(a 2 -- b2)(ejn - enj), 

[Yk, z (j)] =abn(ekj  -- ejk) + n(a 2 -- b2)(ekn -- enk), 

while 

[Xj, z (j)] = -2 iabn (e j j  - enn) + n(a 2 - b2)(ejn - enj). 

We observed earlier in the paper  tha t  

TH = span{ejn - enj, i(ejn + enj) : 1 <_ j < n - 1}. 

Thus  all the vectors i(en - enn), eok - ek3 and i(e3k + ek3) for j < k < n, l < n 

belong to Tz(1) + . . .  + Tz(~-~) + TH, and these clearly span g_. 
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4. A p p e n d i x  - -  T h e  t r a n s p o s e  o f  m a t r i x  Cz for  SU(5) 

Rxl5 Ryl5 R125 Ry25 R135 Ry35 R145 Ry45 
Cy l l  -2115 2y15 0 0 0 0 0 0 
6y22 0 0 -2125 2y25 0 0 0 0 
6y33 0 0 0 0 -2135 2y35 0 0 
Cy44 0 0 0 0 0 0 -2145 2y45 
CXl2 -Y25 -125 Y15 x15 0 0 0 0 
Cy12 -125 Y25 -115 Y15 0 0 0 0 
CXl3 -Y35 -x35 0 0 Y15 x15 0 0 
Cyl3 -x35 Y35 0 0 -2:15 y15 0 0 
CXl4 -Y45 -x45 0 0 0 0 y15 x15 
Cy14 -x45 y45 0 0 0 0 -x15 y15 
C123 0 0 -Y35 -x35 Y25 x25 0 0 
Cy23 0 0 --135 Y35 --125 Y25 0 0 
63~24 0 0 -Y45 -x45 0 0 Y25 125 
Cy24 0 0 -145 Y45 0 0 -125 Y25 
6134 0 0 0 0 --Y45 --145 Y35 X35 
Cy34 0 0 0 0 -145 Y45 -135 Y35 
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