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ABSTRACT

We show that the minimal k such that u* € L!(SU(n)) for all central,
continuous measures g on SU(n) is k = n. We do this by exhibiting an
element g € SU(n) for which the (n — 1)-fold product of its conjugacy
class has zero Haar measure. This ensures that if p4 is the corresponding
orbital measure supported on the conjugacy class, then ”2—1 is singular
to L.

1. Introduction

It is well known that there are many continuous, singular measures on the circle
(or any compact abelian group) all of whose convolution powers remain singular
to L. In contrast, Ragozin in [6] proved the striking fact that if G is a compact,
connected, simple Lie group and p is any central, continuous measure on G, then
udimG = Ll(G).

Ragozin’s result was first improved in [2] where it was shown that if & >
dimG/2 and p is any central, continuous measure, then y* € L(G), and that
p¥ € L*(G) for many continuous central measures. This result was subsequently
improved for the classical Lie groups in [3] where estimates were made on the
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size of characters (in terms of their degrees) which enabled one to determine the
minimal k such that g* € L?(G) for all continuous, orbital measures y. The
precise choice of k depends upon the Lie group type, but is roughly the rank of
G.

In particular, this improvement implies that when the group is SU(n), then
p™ € L' for all central, continuous measures p. In [1] it had previously been
conjectured that u"~! € L'(SU(n)). Here we will exhibit a central, continuous
measure such that p"~! is purely singular, thereby completing the proof that
ukF € L for all central, continuous measures p on SU(n) if and only if &£ > n.

Our example is an orbital measure. The orbital measure, 4, supported on
the conjugacy class C(g) containing g, is defined by

/ fdpg = / f(tgt~Y)dmg(t) for any continuous function f.
el G

Orbital measures are continuous if and only if ¢ is not in the centre of the group,
and are always singular to Haar measure being supported on a submanifold of
lower dimension. Indeed, u’; is (trivially) singular provided & dim C(g) < dimG.

In [3] it was shown that uf € L?(SU(n)) for all g not in the centre of SU(n).
Since u? is supported on C(g)", it follows that the Haar measure of C(g)" is
positive for all such g. In this paper we will prove that the measure of C(g)" !
is zero when g is the diagonal matrix (¢¢,...,e*, e~ (®"1%) in SU(n). Because
iy~ " is supported on C(g)™! this demonstrates that p4 is a central, continuous
measure whose (n — 1)-st convolution power is singular.

2. Basic properties of tangent spaces

2.1. OUTLINE OF THE PROOF. We begin by introducing notation and giving
an outline of the strategy of the proof.
Let G = SU(n), n > 2, and let g denote its Lie algebra,

= {n x n matrices z: z = —2%, trz =0}.
g

We view g as a real algebra of dimension n? — 1. For z = (zjx) €g we write
Zjk = :cjk—-f— iy, With z;x, yx real. Note that z;; = 0 and zx; = ~Ejk + Yk
Initially we focus on the diagonal matrix H = (i,...,%,—(n — 1)i) in g and the
adjoint orbit of H in g, -

O={Ad(g)H:g€ G} ={gHg ':g€G}.
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The matrix H is relevant because its exponential is the matrix in SU(n)
mentioned in the introduction.

Our approach is geometric, and involves a study of the tangent spaces to the
adjoint orbit. First, properties of the orbit O are used to find small spanning
sets for the tangent spaces to O at typical points of O. Next, the spanning sets
are used to prove that the dimension of the sum of any n — 1 of these ‘typical’
tangent spaces is less than the dimension of g. This is basically done by finding
sufficiently many linearly independent vectors in the kernel of a suitable matrix.
A denseness and continuity argument allows us to extend this result to the sum
of any n — 1 tangent spaces to the orbit. Because these sums of tangent spaces
are the images of the differential of the addition map from O"~! to the (n — 1)-
fold sum of O, Sard’s theorem can be invoked to argue that the Haar measure
of (n — 1)O, and hence exp((n — 1)0), is zero. Finally, we consider g = expH in
SU(n), and its conjugacy class C. Since it is known that C"~! C exp(n — 1)0,
this set must also have Haar measure zero, completing the proof of our key result.

2.2. PROPERTIES OF THE ADJOINT ORBIT.

PRrROPOSITION 2.1: The dimension of the orbit O is 2(n — 1).

Proof: A general fact about Lie algebras is that if ®* is the set of positive roots
of g and ®*(H) is the set of positive roots annihilating H, then the dimension
of the adjoint orbit of H is 2(|®*| — |@+(H)|) ([5], ch. 6: 4.8). In our case we
may take
ot ={e,~e;:1<i<j<n}
where {e,}™ , denotes the standard basis vectors in R*. Then
dt(H)={e,~ej:1<i<j<n-1}

which has cardinality (*'). |

Next, we list some elementary properties of elements of the orbit.
PROPOSITION 2.2: Suppose z € O. Then
(1) T3 + Yon = (1 = yuk)(1 ~ ynn) for 1 <k <m—1,
(1) (1= Ynn)Tjk = ~TjnYkn + Yjnen for 1 <j <k <n-—1,
(iif) —(1 — Ynn)¥jk = TynTkn + Yyn¥kn for 1 <j <k <n-—1.

Proof: Let z = (z) = gHg ! for g € SU(n) and assume g = (g;x) with
9ik = ok + 1Bk, ok, Bjr real. One can easily calculate that

n—1
Zik =) 95k — (n = 1)igjnTin-
=1
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Using the properties 3 1 ; lgn|> = 1 and 31", guiGj1 = 0 if j # k one can verify
that the diagonal entries of z satisfy ypx = 1 — n ngn|2, and the non-diagonal
entries are given by

Ty = n(aknﬂjn - ajnﬂkn) and Yk = "‘n(aknajn + ,B]nﬂkn)

for j # k. It is a straightforward exercise to see that the claims follow easily from
these facts. |

We identify 2 €g as the row vector (also denoted z) in R™ ~! with the identi-
fication B

(2~1) z = [yu, coyYn—1n-1,212, Y12, - -, T1,n-1,Y1,n-1, 23,

ey Yon—1s-- 3 Tny -y yn—l,n]-
If ynn # 1 we call z generic.

2.3. TANGENT SPACES OF THE ORBIT. As mentioned earlier, our approach to
the problem involves a study of tangent spaces: For z € O, the tangent space to
O at z will be denoted T;. This is known ([5], ch. 6: 4; see also [9], 2.9) to equal

Tz={[X,z]:Xeg}.

Let ejx denote the nxn matrix with 1 in entry j,k and O else. For1 < j <n-1,
define X; and Y; €g by X; = ejn — enj and Y; = i(ejn + €n;). We will think of
(X, 2] and [Y;, 2] as row vectors in R™ ~1 with the ordering outlined above, and
construct a 2(n — 1) x (n? — 1) matrix A, whose rows in order are

[Yl,z] s [X],Z] genoy [Yn—la Z] s [Xn_l,z] .

A good understanding of A, is the key to all of our results. We will label
the columns of A, by the identification of z as a row vector in RY -1, For
1 <4,k <n-1,[X; 2, = 2iyndy and [Y}, 2], = —2izjndx. We label the
rows [X;,z] and [Y},z] by y;n and ;n, respectively. For a = z;, or y;, and
b = y;j, Tjk or y;x we denote by (a, b) the entry of A, along row a and column b.
The row and column vectors will be denoted R, and C,. We refer to the variables
in the set

{tho, Tk, yje 1 1 < 4,5,k <n—1, j <k}

as the nontangent variables, and

{xjmyjn:ls.jsn_l}
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as the tangent variables. The submatrix of A, consisting of the nontangent
variable columns will be denoted C,.

The following lemma describes the elements of A, in terms of (a,b), along
columns given by nontangent variables. The entries in the tangent variable
columns could be described as well, but this is not necessary for our main result.

LEMMA 2.3: Let ze R¥ 1. For1<j<n-1land1<i<k<n—1, we have:
(1) (zyn,Zik) = Yjns Tik) = (Tyns Vi) = WYyno Yix) = 0 if 4,k # j;
(11) (-Tjnaykk) = —2$]n5jk7 (yjmykk) = 2yjn(sjka'

(111) (xjn, xjk) = —Ykn, (-T]ru yjk:) = —Tkn, (yjnamjk) = —Zkn, (yjn’yjk) = Ykn,
for j < k;

(iv) (xj"7xij) = Yin, (xjmyzj) = —Tin, (yjnaxzj) = Tan, (yjn,yij) = Yn,
fori < j.

Proof: These results are due to the following calculations:

0 ifm+#£j
(ejnz)mk = { ~Tkn +iYen fm=j,k#n ;
iy,m ifm=j,k=n

ifm+#n
—zc]k+zy]k ifm=n,k<j
1 ifm=n,k=j
Tik + Wk ifm=nk>j

Il

)

(engz)mk

1Y, ifk=n,m=3j"

—x]m—l—zyjm ifk=n,m>j
ifk#j

zmn+zymn ifk=j,m#n . |

Wnn ifk=j,m=n

(zenj )mk =

ifk#n
(2eym )k = {xm] + 1Ymj ifk=nm«<j

We also extend the definition of C, to any z € R -1 (where the components
of z are as labelled in (2.1)) in the natural way. The matrix C, for SU(5) is listed
in the appendix for the reader’s convenience.

LEMMA 2.4: For any z € R"z“l, (U1ns T1ny - -« Tn_1,0)C, = 0.

Proof: 'This is equivalent to checking that if R/, denotes row a of C,, then

n—1
(2'2) ZyjanzM + Zx]n Yy
Jj=1
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Expanding the left side of equation (2.2) along the columns labelled by ygx,
k=1,...,n— 1, we obtain

n—1 n-1
> in(=22in)0pk + Y Tin(2ysn)djk = 0.
j=1 j=1

Expanding along the columns z, for 1 <i < k <n—1, we have
n—-1 n—1
> Yin(@n, Tik) + 3 Tin(Yjn, Tik)
j=1 j=1

=Yin(Tin, Tik) + Yrn (Tkn, Tik) + Tin Yin, Tok) + Tin (Ykn, Tik)
=yin(_ykn) + ykn(yin) + xzn(_xkn) + Tkn (-xtn) =0.

A similar calculation shows that the expansion along columns g, is also zero,
establishing (2.2). |

PROPOSITION 2.5: Let 2z € O be generic.
(i) Ifz = H, then Ty = span{ejn—en;,i(ejn+en;) : j < n—1} andrank(A4,) =
2(n—1).
(i) If z # H, then rank(C,) = 2n — 3.

Proof: (i) It is easily seen that for 1 < j < n—1, [X;, H] = —ni(ejn + €p,) and
[Y,, H] = n(ejn—en;). These are linearly independent, hence rank(Ag) = 2(n—1)
and

span{(X,, H], [Y;,H]: j <n -1} =Ty.

(i) Suppose that for all 1 < i < n — 1, y;; = 1. Proposition 2.2 shows that in
this case Tgn = yrn = 0 for all £ # n. But then z;; = y;x = 0 for all j # k.
As Tr 2z = 0, this implies z = H. Thus for any generic z other than H we may
assume that for some ¢,

wz'zn + y112n = (1 - y'ii)(l - ynn) #0,
and hence at least one of x;, or y;, # 0. It follows from the previous lemma that

the rows of C, are linearly dependent, and hence rank(C,) < 2n — 3.
Consider the following submatrix D, of C,:

Dz = [Cyn’ Czlt’ Cyu Yty C-'Bz—l,l ) Cyl—‘l K3} CE1,;+1’ Cy1,3+1 1ty Cmt,n—l’ Cyt.n—l]'

Note that the number of columns in D, is 2n — 3. We will show that they are
linearly independent. So suppose that

i—1 n-—1

(2.3) > (axCay, +5jiCy,) + D (aiiCu,, +bi5Cy,,) + biCy,, = 0.
j=1 j=1+1
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Expanding (2.3) along rows labelled by x, for k # i we obtain
1

(@i (Zkns> ji) + bye(Thn, Yj2)
1

(2

J

n—1

(2~4) + Z (az](ﬂf'knv Izj) + sz (xkna yzj)) + bu’(xkna yiz) =0.
J=1+1

Take 1 < k < i. Using Lemma 2.3, (2.4) simplifies to
ke (~Yin) + bri(— ) = 0.
Expanding (2.3) along the row labelled by yin, k # 7, we find that

akz(_xm) + bkz(ym) =0.

As z2, + y2, # 0, we conclude that ag, = by; = 0.

A similar analysis shows that a;x = b, = 0 for ¢ < k < n — 1, hence (2.3)
reduces to b;;Cy,, = 0. But Cy, (zin) = —2xin and Cy,, (Yun) = 2ysn- As at least
one of x4, or ¥y, £ 0, by = 0. Thus we also have rank(C,) > 2n ~ 3. |

Remark 2.1: Although it was not necessary for the proof of this proposition to
use the fact that (2.2) holds for all z € R™ —1, this will be convenient later in the
paper.

We can now find a (small) spanning set for the tangent spaces at generic points.

- 2
For 2 € O,let 2 = [0, Zin, Y1, - -y Tn—1,n, Yn—1,n] € R* 7L

COROLLARY 2.6: Suppose z € O is generic. Then
T, =span{R;, Ry, , z:j=1,...,n—1}.

Proof: Note that ]

z = E[H )2,
and thus belongs to T,. As remarked above, if 2 = H the vectors Ry, Ry,
j=1,...,n—1, already span T,.

Adjoin to A, the row vector z;, and let D/, denote the matrix obtained from
this enlarged matrix in the same manner as D, was obtained from A,. We
already know from the proof of the previous proposition that the columns of D,
are linearly independent. If 2 # H, then (as also noted previously) for some i # n
at least one of z;, or y;;, # 0. Hence at least one of C; or C,,, is not in the
span of the columns of D, and therefore rank(A}) > 2(n — 1). 1
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3. Sums of tangent spaces

3.1. KeEy RESULTS. In this section we will prove that the (n — 1)-fold sum of
the orbit has measure zero. We will continue to use the notation introduced in
section 2. Qur main technical result is:

THEOREM 3.1: If 2V, ..., 2(""2) are generic points belonging to the adjoint
orbit O of H, then

dim(Tz(l) + o+ Tyin-2) + TH) < n? - 2.

Proof: One can see from the proof of Proposition 2.5(i) that Ay = [0| Dy,
where Dy = (d;x) is a 2(n — 1) x 2(n — 1) diagonal matrix with d;; = —ni for
J odd and d;; = n for j even. It follows from this observation and Corollary
2.6 that the theorem would be proved if we could show that the rank of the
2(n — 1)(n — 2) x (n — 1)? matrix

C,m
o(2) C,
2) = i
Cz(n—Z)
is at most n(n —2) for all z = (2(),...,2(*=2), 2(9) generic points in O. This is

what we now proceed to show.
For any 2 € R -1, 1< j<n—2, and z = (z,...,2"?) define

EIE

7, Yin

a; = agz) = . b]' = b§z) = .
yr(zjf)l,n _J"%Ql,n
'zg—)—l,n‘ - yr(zj—)l,n -

Next, we define block vectors, with (n — 2) blocks. Each block vector will have
either one or two non-zero blocks. We will denote by a; the block vector whose
J-th block is a;. For 1 <i < j <n— 2, we set

0
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where a; (resp. b,) is in block ¢ and a; (—b;) is in block j. Let

K(2) = {ﬁz), 52),5(7‘) 1<i,5,k<n-2, <k},

and let Q(z) be the transpose of C(z).

There are three main steps to the proof. First, we will show that K(z) C
ker(Q(z)) for all z. Then we will prove that for a dense set of vectors in
R("2*1)(“_2), the set K(z) is linearly independent. Lastly, we use these facts
to verify that rank C(z) < n{n —2) for all z = (2(V,...,2("=2), 20) generic
points in O.

STEP 1: K(z) C ker(Q(z)): By symmetry it is enough to show this for
a1, 012, B12. That ¢y € ker(Q(2)) follows from Lemma 2.4.
To prove aya, B12 € ker(Q(2)) it is enough to show that if

c® = 0@ (z) = [Czu)} ,

2(2)

Q® = transpose(C?) and

then o}, 814 € ker(Q®).

We will check that o4, € ker(Q®) and leave the verification of 8}, to the
reader. It suffices to show that (&},)"” C® = 0. For b = y;;, Tk, yjx we will let
C,E2) denote the column of C(®) labelled by b. Since column Cg(,kl has non-zero en-

tries only in positions xgm), y,(;l), xgc?,y,(ci) with values 2xkn,2y,(;3, 2x§m), 2y,(02n),

respectively, it is clear that (of,)" C,(,fl =

Forl1<i<k<n-1,

(042)" )

2y, (1) (1 2) (2 1), (2) (2
_z ( Jn’ (1)) +$( )(y;n)’mgk)) + y(l)( gn), gk)) + mgn)(yj(n), Ek)))
l m i l m m l m
Z*yfn’ 2o, 2)) + Y (@i 25) + ol i o %) + 2 (i 2
where ) x denotes the sum over I = 1,m =2 and I = 2,m = 1. Thus
r m [4 m

(1) CL2) = 3w (—ul)) + via i) + 2 (—ai) + s w) = 0.

The argument that (o;5)™ CS%) = 0 is similar.
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STEP 2: The fact that K (z) is linearly independent for “most” 2 is an immediate
consequence of the next two lemmas.

LEMMA 3.2: Assume that {a{?,0{",... 6, al” } is linearly independent.

Then K(z) is linearly independent.

Proof: Assume
n—2

(3.1) Z t; 0y + Z Lijoug + Z Sijﬂij =0.
i=1 1<1<y<n—-2 1<i<j<n—2

By considering the last block one sees that this equality implies

n—3

tn_2@n_2 + Z (tin—2a, — Sin—2b;) =0
=1
and consequently t,_2 = ¢, n_2 = 85,n_g =0forall¢ =1,...,n—3. Substituting

this information into (3.1) and examining the 2nd last block yields

n—4
ln—30n—3+ Z (ti,n—Saz - 3i,n-—3bi) =0

i=1
Again we conclude that t,_3 = t;n3 = Sip—3 =0 foralli=1,...,n - 4.
Repeating, it follows that all coefficients ¢;,#;;, s;; = 0. |
LEMMA 3.3: There is a dense set of z = (z(,..., 2=, 20) € R** -1 such
that {a(z) b(z) .,bff)a, a,”’ 2} is linearly mdependent
Proof: We will assume inductively that for any z = (z(M,... z(*=2), 20 ¢

R™ 1, and ¢ > 0, there is some z € R® ~D("=2) guch that ||z — z|| < & and the
first 27 — 1 rows of the matrix

0, b, ..o

are linearly independent for all j < k (k < n - 2). (Of course, then the 25 — 1
column vectors are also linearly independent.)

If ¥ = 1, this is easily seen to be true as we only need find 2 in an &-
neighbourhood of z such that y(l) # 0. Assuming the induction assumption
holds for k, we will show that it holds for k +1 (< n —2).

Begin by choosing z in the £-neighbourhood of x which works for k and consider
rows 1,...,2k — 1 and row 2k + 1 of the matrix

(0, —8) ., ~47).

ay ", —
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Notice that the (2k + 1,2k) entry of this matrix is xgizl’n and this is formally
different from any other entry. By assumption, the upper (2k — 1) x (2k — 1)
submatrix is invertible, hence there is only one choice for the (2k + 1, 2k) entry
{(with all other entries fixed) such that rows 1,...,2k — 1,2k + 1 are not linearly
independent. If mgi)l’n is equal to this one choice, we replace it by a suitable
real number such that the new (but still named) vector z continues to satisfy
|z - z|| < e. As the entries of the upper (2k — 1) x (2k — 1) submatrix are
unchanged after this replacement, the first 2k — 1 rows of [a(lz), bgz), .. .,aiz)]
remain linearly independent.
Next, we carry out a similar argument with the first 2k + 1 rows of

[af, —b{, ..., =8, aii)y):

The (2k, 2k +1) entry is x( +1) and this is formally different from any other. The
linear independence of rows 1,...,2k — 1, 2k + 1 of [a(lz), -b&’), . ..,bgf)] again

ensures there is only one value for ¥ 1 such that the first 2k + 1 rows of

@, —07,..., =6, o]

are linearly dependent. Modify this component of z if necessary. Rows 1,...,
2k — 1 of [a{?, —b{?, .. ,agc )] are unchanged with this new definition of # and
thus remain linearly independent. This completes the induction step. |

Completion of the Proof of the Theorem.

STEP 3: Bound for rank(C(z)): Steps 1 and 2 clearly imply that for a dense
set of z € R™ ~1D("=2) K () is a linearly independent set in ker Q(z). Thus for
a dense set of z,

rank(C(z)) = rank(Q(2)) £ 2(n - 1)(n — 2) — |K(2)| = n(n — 2).

Suppose there was some vector z = (2, ..., z(=2), £0) € R* ~! with rank(C®)
> n(n —2). A continuity argument would imply that rank(C(z)) > n(n — 2) for
all z in a neighbourhood of x, and this is a contradiction. 1

In order to derive similar results for non-generic points, we need one additional
result on the denseness of generic points.

LEMMA 3.4: The set

{(gHg_l,gz(l)g_l, oy 92™ g7 Yy g € SU(n), 29 € 0 generic}
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is dense in the Cartesian product O™~ 1.

Proof Let z = (gHg ', gyMg~1,..., 99" Pg=1) € O where g € SU(n),
and assume y() = g;Hg"". Observe that y{9) is generic if and only if (g;)nn # 0
(see the proof of Proposition 2.2). In the generic case set g; = g; and 249) = 40,

Otherwise, express g; as P,-Dij"l, where D, € SU(n) is diagonal and P; €
SU(n). Choose k = k(j) such that (P;)nx # 0 and take i = i(j) # k(j). Find a
neighbourhood A; of 0 such that for all

Ae{e:0e Ay, 040} =U;,
we have
[Pkl (D3 + (Pl (D)X # 1Pkl (Ds)ik + (Pl (Dy)ss-
Select A € ﬂ;:lz Uj. For g, non-generic define a diagonal matrix D; by
(Dy)reA  if L= k(j)
(Di)y = D)ur  ifl=1(5)
(Dj)u else

and put g; = PjD;-Pj_l. Then g; € SU(n) and, as

(97)nn ZI Ykl (D})kx # (95)nns

Z0) = gtHgi™" is generic.
By choosing X suitably close to 1 we can make

(gHg™ Y, g2Mg™1, ..., g2~ Dg Ty

as close to z as necessary. |

COROLLARY 3.5: For all 2(V,...,2(»~1 € O,

dil’n(TZu) + -4 Tz(n—l)) < n?—-2< dimg.

Proof:  Since Taqg), = Ad(g)T,, it follows that dim ), T,o) = dim ), Ty-1,0,
for all g € G. Thus dim Z;:ll Ty-1,004 < n? — 2 whenever z(1), ... 2»=2 € O
are generic and 2(*~1) = H.

Consider the addition map F from O™! to the (n — 1)-fold sum of O in 9

F:0"'»(n-1)0=0+---+0Cy.
N, e’ =

n—1
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The differential of F at z = (z(V,...,z(®*~V) € O"~1, (dF),, maps onto the sum
of the tangent spaces to O at (9, Z?z_ll T, . A continuity argument shows that
if the linear map (dF); had rank n? —1 at some z, then it would have rank n? —1
on a neighbourhood of z. This contradicts the fact that dim " T,y < n? —2 on
a dense set (z(V,...,2(n=D) e On1, n

COROLLARY 3.6: The (n — 1)-fold sum of the orbit O has measure zero in g.

Proof: Again consider the addition map F: O"' — (n —~1)O C g. Since
rank(F) < n?—2 < dimg at all points of O"~!, Sard’s theorem ([4]) implies that
the measure of the image of F' is zero. But the image of F is (n — 1)O. 1

3.2. TRANSFERRING THE RESULTS TO SU(n). Finally, we consider the conju-
gacy class in G containing exp(H), C = C(expH), and the orbital measure pexpn
which it supports. Since dimC = 2(n — 1) (see [5], ch. 4: 4.15 or [8], VIII 7.4)
we trivially know that C* has measure 0 if

k< dimG/dimC = (n+1)/2,

and that for such k, u¥ 5 is singular to L'(G). In contrast, as was mentioned
in the introduction, p?, 5 € L? and hence belongs to L' ([3]).

COROLLARY 3.7: (i) The Haar measure of the C* is zero if and only if k < n—1.
(i) The measure pf, y is singular to L*(G) if and only if k <n — 1.

Proof: By [1], C"! C exp((n —1)O). Since z — expz is a C* map and the
measure of (n—1)O is zero, it follows that the Haar measure of exp ((n — 1)O) is

n—1 - . 1 .
zero. The measure Prexpr 18 singular to L7, being supported on a set of measure
Z€ero.

The measure of C™ is non-zero as C™ supports the non-zero, absolutely con-

tinuous measure g, g. ]

As it was already known ([3]) that p™ € L! for every central, continuous
measure g on SU(n), we have now proven the result stated in the introduction:

COROLLARY 3.8: When G = SU(n), u* € LY(G) for every central, continuous
measure y on G if and only if k > n.

Remark 3.1: Notice that u’e"po € L' if and only if u’gpo € L2 It would be
interesting to know if this is true for all orbital measures pg on SU(n). It is
known that if v is any surface measure supported on a submanifold W such that
W™ has interior, then v™ € L? for some p > 1 ([7]).
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3.3. N-FOLD SUMS OF TANGENT SPACES. Since m(C™) > 0, it follows from
Sard’s theorem that

dim(T,) + -+ + Tyn-1) + Th) = dimg
for some z(V,... 2"~ € O. In fact, we can display an explicit example of
points z( ..., 2(®=1) for which this is true.
Example 3.1: Generic points 2V, ..., 2"~ ¢ O such that T,u) + --- +
Ty + Ty = g:
Fix a,b € R\{0} with a2 + b2 = 1. For j = 1,...,n — 1 let g; € SU(n) be

defined by

(gj)jj = —a, (gj)vm =a, (gj)jn =b, (gj)nj = b, (gj)kk =1
for k # j,n, and all other entries of g; zero. Take

20 = Ad(g;)H

we have

z,(fk) =i if k # j,n; (J) =i(1-nb?); 2Y9) =i(1 - na?);

(J) _Z(J) (4

Zjy =2zn; = —abni; and 2z = 0 else.

Certainly zV) is generic.
As in section 2 let

Xk =€gn —eny and Y =i(exn + enk),

and recall that [Xy, 2], [Yk,2Y)] € T,i;). From Lemma 2.3 one can check that
for k # j,n,

[Xk, 2] = — dabn(ex; + ejk) + n(a® — b)(ejn — enj),
(Y, z(j)] =abn(ex; — eji) + n(a? — b%)(exn — enk),
while
(X, 29 = —2iabn(e;; — enn) + n(a® — b*)(ejn — eny).
We observed earlier in the paper that
Tu = span{ejn — €nj, i(ejn +eny): 1 <j<n—1}

Thus all the vectors i(ey — enn), €yx — €x; and (e, +exy) for j <k <m,l<n
belong to T,a) + -+ -+ Tyn-1) + TH, and these clearly span g.
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4. Appendix — The transpose of matrix C, for SU(5)
Rxis Ryis Rzas Ryss Rzss Ryss Rrys  Ryss

Cyu —215 21/15 0 0 0 0 0 0
Cya2 0 0 —2x95  2ya5 0 0 0 0
Cys3 0 0 0 0 —2x35 2y3s 0 0
Cysa 0 0 0 0 0 0 —2T45  2Y4s
Cry2 -y —Tas Y5 Z15 0 0 0 0
Cyra —T2s Y25 —Ti5 Y15 0 0 0 0
Cri3 —yss —%3s 0 0 Y15 T15 0 0
Cyizs  —T3s  ¥ss 0 0 —ZT15 Y15 0 0
Cris  —yss —T4s 0 0 0 0 Y15 T1s
Cyie  —Tas  Yas 0 0 0 0 —Z15 Y15
Cza3 0 0 ~Y3ss —I35  Ya5 Tas 0 0
Cyas 0 0 ~T35s Y5  —Tas Y25 0 0
Cxay 0 0 ~Y45 —T45 0 0 Yos  T25
Cyas 0 0 ~T45 Y45 0 0 —ZTas Y25
C.’L‘34 0 0 0 0 —Y45 —T45 Y3s x35
Cysq 0 0 0 0 —Z45  Yas  —T3s Y35
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